3.6.41 \(\int \frac {(1+x) (1+2 x+x^2)^5}{x^{15}} \, dx\)

Optimal. Leaf size=37 \[ -\frac {(x+1)^{12}}{14 x^{14}}+\frac {(x+1)^{12}}{91 x^{13}}-\frac {(x+1)^{12}}{1092 x^{12}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 37, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {27, 45, 37} \begin {gather*} -\frac {(x+1)^{12}}{1092 x^{12}}+\frac {(x+1)^{12}}{91 x^{13}}-\frac {(x+1)^{12}}{14 x^{14}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((1 + x)*(1 + 2*x + x^2)^5)/x^15,x]

[Out]

-(1 + x)^12/(14*x^14) + (1 + x)^12/(91*x^13) - (1 + x)^12/(1092*x^12)

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rubi steps

\begin {align*} \int \frac {(1+x) \left (1+2 x+x^2\right )^5}{x^{15}} \, dx &=\int \frac {(1+x)^{11}}{x^{15}} \, dx\\ &=-\frac {(1+x)^{12}}{14 x^{14}}-\frac {1}{7} \int \frac {(1+x)^{11}}{x^{14}} \, dx\\ &=-\frac {(1+x)^{12}}{14 x^{14}}+\frac {(1+x)^{12}}{91 x^{13}}+\frac {1}{91} \int \frac {(1+x)^{11}}{x^{13}} \, dx\\ &=-\frac {(1+x)^{12}}{14 x^{14}}+\frac {(1+x)^{12}}{91 x^{13}}-\frac {(1+x)^{12}}{1092 x^{12}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.00, size = 79, normalized size = 2.14 \begin {gather*} -\frac {1}{14 x^{14}}-\frac {11}{13 x^{13}}-\frac {55}{12 x^{12}}-\frac {15}{x^{11}}-\frac {33}{x^{10}}-\frac {154}{3 x^9}-\frac {231}{4 x^8}-\frac {330}{7 x^7}-\frac {55}{2 x^6}-\frac {11}{x^5}-\frac {11}{4 x^4}-\frac {1}{3 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((1 + x)*(1 + 2*x + x^2)^5)/x^15,x]

[Out]

-1/14*1/x^14 - 11/(13*x^13) - 55/(12*x^12) - 15/x^11 - 33/x^10 - 154/(3*x^9) - 231/(4*x^8) - 330/(7*x^7) - 55/
(2*x^6) - 11/x^5 - 11/(4*x^4) - 1/(3*x^3)

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {(1+x) \left (1+2 x+x^2\right )^5}{x^{15}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[((1 + x)*(1 + 2*x + x^2)^5)/x^15,x]

[Out]

IntegrateAlgebraic[((1 + x)*(1 + 2*x + x^2)^5)/x^15, x]

________________________________________________________________________________________

fricas [A]  time = 0.39, size = 60, normalized size = 1.62 \begin {gather*} -\frac {364 \, x^{11} + 3003 \, x^{10} + 12012 \, x^{9} + 30030 \, x^{8} + 51480 \, x^{7} + 63063 \, x^{6} + 56056 \, x^{5} + 36036 \, x^{4} + 16380 \, x^{3} + 5005 \, x^{2} + 924 \, x + 78}{1092 \, x^{14}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)*(x^2+2*x+1)^5/x^15,x, algorithm="fricas")

[Out]

-1/1092*(364*x^11 + 3003*x^10 + 12012*x^9 + 30030*x^8 + 51480*x^7 + 63063*x^6 + 56056*x^5 + 36036*x^4 + 16380*
x^3 + 5005*x^2 + 924*x + 78)/x^14

________________________________________________________________________________________

giac [A]  time = 0.17, size = 60, normalized size = 1.62 \begin {gather*} -\frac {364 \, x^{11} + 3003 \, x^{10} + 12012 \, x^{9} + 30030 \, x^{8} + 51480 \, x^{7} + 63063 \, x^{6} + 56056 \, x^{5} + 36036 \, x^{4} + 16380 \, x^{3} + 5005 \, x^{2} + 924 \, x + 78}{1092 \, x^{14}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)*(x^2+2*x+1)^5/x^15,x, algorithm="giac")

[Out]

-1/1092*(364*x^11 + 3003*x^10 + 12012*x^9 + 30030*x^8 + 51480*x^7 + 63063*x^6 + 56056*x^5 + 36036*x^4 + 16380*
x^3 + 5005*x^2 + 924*x + 78)/x^14

________________________________________________________________________________________

maple [A]  time = 0.05, size = 62, normalized size = 1.68 \begin {gather*} -\frac {1}{3 x^{3}}-\frac {11}{4 x^{4}}-\frac {11}{x^{5}}-\frac {55}{2 x^{6}}-\frac {330}{7 x^{7}}-\frac {231}{4 x^{8}}-\frac {154}{3 x^{9}}-\frac {33}{x^{10}}-\frac {15}{x^{11}}-\frac {55}{12 x^{12}}-\frac {11}{13 x^{13}}-\frac {1}{14 x^{14}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x+1)*(x^2+2*x+1)^5/x^15,x)

[Out]

-11/x^5-11/4/x^4-1/3/x^3-55/12/x^12-231/4/x^8-33/x^10-154/3/x^9-1/14/x^14-330/7/x^7-55/2/x^6-15/x^11-11/13/x^1
3

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 60, normalized size = 1.62 \begin {gather*} -\frac {364 \, x^{11} + 3003 \, x^{10} + 12012 \, x^{9} + 30030 \, x^{8} + 51480 \, x^{7} + 63063 \, x^{6} + 56056 \, x^{5} + 36036 \, x^{4} + 16380 \, x^{3} + 5005 \, x^{2} + 924 \, x + 78}{1092 \, x^{14}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)*(x^2+2*x+1)^5/x^15,x, algorithm="maxima")

[Out]

-1/1092*(364*x^11 + 3003*x^10 + 12012*x^9 + 30030*x^8 + 51480*x^7 + 63063*x^6 + 56056*x^5 + 36036*x^4 + 16380*
x^3 + 5005*x^2 + 924*x + 78)/x^14

________________________________________________________________________________________

mupad [B]  time = 1.08, size = 60, normalized size = 1.62 \begin {gather*} -\frac {\frac {x^{11}}{3}+\frac {11\,x^{10}}{4}+11\,x^9+\frac {55\,x^8}{2}+\frac {330\,x^7}{7}+\frac {231\,x^6}{4}+\frac {154\,x^5}{3}+33\,x^4+15\,x^3+\frac {55\,x^2}{12}+\frac {11\,x}{13}+\frac {1}{14}}{x^{14}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x + 1)*(2*x + x^2 + 1)^5)/x^15,x)

[Out]

-((11*x)/13 + (55*x^2)/12 + 15*x^3 + 33*x^4 + (154*x^5)/3 + (231*x^6)/4 + (330*x^7)/7 + (55*x^8)/2 + 11*x^9 +
(11*x^10)/4 + x^11/3 + 1/14)/x^14

________________________________________________________________________________________

sympy [B]  time = 0.18, size = 61, normalized size = 1.65 \begin {gather*} \frac {- 364 x^{11} - 3003 x^{10} - 12012 x^{9} - 30030 x^{8} - 51480 x^{7} - 63063 x^{6} - 56056 x^{5} - 36036 x^{4} - 16380 x^{3} - 5005 x^{2} - 924 x - 78}{1092 x^{14}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)*(x**2+2*x+1)**5/x**15,x)

[Out]

(-364*x**11 - 3003*x**10 - 12012*x**9 - 30030*x**8 - 51480*x**7 - 63063*x**6 - 56056*x**5 - 36036*x**4 - 16380
*x**3 - 5005*x**2 - 924*x - 78)/(1092*x**14)

________________________________________________________________________________________